
Suderman Electronic & Computer Engineering i

Feasibility Testing of Real-Time Object

Segmentation and Recognition Models in Small

Embedded Systems

Kaden Suderman

Electronic and Computer Engineering

School of Engineering

University of Galway

Supervisor & Co-Assessor

Dr. Adnan Elahi

Dr. Peter Corcoran

In partial fulfilment of the requirements for the degree of

M.E. Electronic & Computer Engineering

April 2024

Suderman Electronic & Computer Engineering ii

Table of contents

Table of contents ... ii

Glossary .. vi

Declaration ... vi

Chapter 1: Introduction .. 8

1.1 Project Introduction ... 8

1.2 Goals & Objectives ... 9

1.2.1 Research and Implementation Strategy.. 10

1.2.2 Smart Vehicle Embedded System .. 10

1.2.3 Remote Computer-Vision Platform... 10

1.2.4 Construction of a Demonstrative Model ... 10

1.2.5 Advanced Deep-Learning Capabilities... 10

1.2.6 System Testing and Validation .. 11

1.2.7 Demonstration of Completed System .. 11

1.3 Conclusions ... 11

Chapter 2: Literature Review .. 12

2.1 Introduction .. 12

2.2 Critical Evaluation of Hardware Design ... 12

2.2.1 Microcontrollers .. 12

2.2.2 Sensors .. 14

2.2.3 Other Sensors ... 14

2.3 Critical Evaluation of Software Design .. 15

2.3.1 Line Detection .. 15

2.3.2 Obstacle Avoidance & Navigation .. 16

2.4 Deep Learning Platform ... 16

2.4.1 Limitations and Requirements of Chosen Application ... 17

2.4.2 Meta Segment Anything Model (SAM) ... 17

2.4.3 YOLOv8 (You Only Look Once, Version 8) ... 18

Suderman Electronic & Computer Engineering iii

2.4.4 Conclusions .. 19

Chapter 3: Foundational Techniques ... 20

3.1 Introduction .. 20

3.2 Microcontrollers (Raspberry Pi) .. 20

3.3 Sensors (CSI Camera and Webcam) ... 20

3.4 Software Design Evaluation ... 21

3.5 Deep Learning Models and Platform .. 21

3.6 Comprehensive Roadmap ... 21

3.7 Conclusions ... 22

Chapter 4: Proposed System Design ... 23

4.1 Introduction .. 23

4.2 System Block Diagram .. 23

4.2.1 Microcontroller – Raspberry Pi 4b .. 24

4.2.2 Power Supply .. 25

4.2.3 Sensors .. 25

4.2.4 Object Recognition and Segmentation Models .. 25

4.2.5 Chassis & Motor System ... 25

4.3 System Component Diagram ... 26

4.4 Conclusions ... 26

Chapter 5: Feasibility Testing & Proof-of-Concept ... 27

5.1 Introduction .. 27

5.2 Hardware Setup & Testing ... 27

5.2.1 Hardware Assembly .. 27

5.3 Software Setup & Testing .. 30

5.3.1 Operating System & Headless Connection ... 30

5.3.2 Software Testing ... 32

5.3.3 Deep Learning Platform Testing .. 32

5.4 Conclusions ... 33

Chapter 6: Core Project Implementation.. 34

6.1 Introduction .. 34

Suderman Electronic & Computer Engineering iv

6.2 Line Following Algorithm Design .. 34

6.3 Line Following Software .. 35

6.3.1 Colour Conversion .. 35

6.3.2 Gaussian Blur .. 36

6.3.3 Binary Thresholding .. 36

6.3.4 Canny Edge Detection ... 37

6.3.5 Hough Line Detection & Line Filtering .. 37

6.3.6 Integration with Chassis .. 39

6.4 Deep Learning Platform Design ... 40

6.4.1 Chosen Models and Purposes .. 40

6.4.2 Technical Details ... 42

6.4.3 Software Development ... 43

6.5 Demo Model Design ... 44

6.6 Conclusions ... 46

Chapter 7: Results & Refinements ... 46

7.1 Deep Learning Platform Performance ... 46

7.1.1 Conclusions and Improvements ... 48

7.2 Line Following Algorithms and Demo Model Performance ... 49

7.2.1 Line Tracking Results .. 49

7.2.2 Analysis of Computational Load ... 52

7.3 Conclusions ... 53

Chapter 8: Enhancements & Additions .. 54

8.1 Additional Models on Edge Device .. 54

8.2 Modifications to Self-Driving Software ... 58

8.3 FastSAM Text Prompt Functionality .. 59

8.4 Conclusions ... 60

Chapter 9: Conclusions & Future Work ... 61

9.1 Project Conclusions ... 61

9.2 Future Work .. 62

Bibliography .. 64

Suderman Electronic & Computer Engineering v

Appendix A: GitHub Repository ... 66

Appendix B: RPI PCA9685 PWM Servo Driver .. 67

Suderman Electronic & Computer Engineering vi

Glossary

SAM – Segment Anything Model

YOLO – You Only Look Once

DL - Deep Learning

RPI – Raspberry Pi

AI - Artificial Intelligence

Declaration

I hereby declare that the work presented in this thesis has not been submitted for any other

degree or professional qualification, and that it is the result of my own independent work.

Name: ___Kaden Suderman____

Date: _____April 2024_________

Suderman Electronic & Computer Engineering 7

 Abstract-- With the rapid growth of computer vision and artificial intelligence

technologies, there is a growing emphasis on augmenting small embedded systems

with deep learning capabilities. The aim of this project is to analyse and demonstrate

the feasibility of integrating object segmentation and recognition models with these

systems via connection to a remote deep learning capable computation platform.

Through the deployment of traditional algorithms and modern inference methods, the

study aims to enhance the efficiency and capabilities of small-scale systems in resource-

constrained environments. Results indicate that while on-device machine learning

offers reliability and no need for a network connection, it entails substantial

computational overheads, greatly limiting the performance of viable models.

Conversely, network-based inference methods are capable of fast inference speeds,

usage of large cutting-edge models, and real-time connection speeds on reliable

networks. The findings underscore the importance of tailoring system architectures to

specific application requirements and optimizing machine learning models for

embedded deployment. Ultimately, this research contributes to the broader embedded

system field, offering insights into the practical implementation challenges and

potential avenues for future advancements.

Suderman Electronic & Computer Engineering 8

Chapter 1: Introduction

1.1 Project Introduction

The market sizes of both machine learning (ML) and embedded systems are steadily

increasing, with an estimated market size of $258.6 Billion by 2032, but implementing ML

in small systems with real-time speeds continues to be a challenge [1]. Furthermore, ML

applications on these systems are often bottlenecked by small form-factors and

computational abilities. This project aims to demonstrate the feasibility of using externally

processed GPU-accelerated machine learning models on small embedded systems in real-

time.

Fig 1.1 Embedded systems market size.

To investigate the feasibility of this task, multiple ML models with various sizes and abilities

have been applied to a test embedded system, demonstrating the benefits and challenges of

this approach. Furthermore, comparative testing has been performed, assessing the real-

time abilities of small ML models performing computation on the embedded device itself

and large deep learning models performing computation separately and communicating

wirelessly with the embedded system. This project aims to demonstrate the feasibility of

using these externally processed GPU-accelerated machine learning models on small

embedded systems in real-time.

The chosen embedded system to apply these differing types of ML models for comparative

testing is a smart vehicle system capable of automated driving capabilities. This chosen

system is a self-driving concept but primarily exists to demonstrate the applicability of this

concept to various network-connected applications which use similar embedded systems,

i.e., security robots, IoT devices, robotics systems, educational devices, or any edge-

computing applications. Vehicle movement, line detection, and tracking algorithms execute

on the edge-device and handle the navigation. This software adds computational load to the

Suderman Electronic & Computer Engineering 9

embedded device, emulating typical systems which must perform computational tasks in

addition to ML models. This demonstrates the cooperation between edge and remote

computing and provides "safety" for insufficient network situations.

The development of a smart vehicle embedded system supplemented with advanced object

detection and self-driving capabilities stems from the escalating advancements in computer

vision and artificial intelligence technologies. With a heightened emphasis on automating

and enhancing the driving experience, and budding possibilities of effectively combining

embedded systems with external real-time computation systems, this project emerges as

vital to utilizing current technologies fused with new techniques to examine and critique

the results.

The primary goal is to construct a miniature smart-vehicle seamlessly integrated with an

embedded computer, leveraging the abilities of deep-learning algorithms to increase

system capabilities. In pursuit of this objective, the project amalgamates insights gleaned

from studies of related self-driving technology and deep-learning model research.

Synthesizing these insights will lead to the establishment of best practices in the field while

introducing innovative advancements.

A key highlight of introducing GPU-accelerated ML processing to small systems is the

enhanced decision-making capabilities they facilitate, providing the capacity to generalize

identification for unknown objects. This critical attribute, also known as zero-shot learning,

enables the system to make informed decisions even in the presence of unclassified

elements, and is an impressive technique being incorporated into the largest cutting-edge

models [2]. This feature, along with various other considerable benefits, provide ample

motivation for investigating the feasibility of integrating large remote ML models into

embedded systems.

The miniature smart-vehicle will traverse a specially designed model environment, tasked

with the identification and tracking of diverse objects, including pedestrians and lanes.

When complete, the system will navigate a test environment to verify the capabilities and

integration of self-driving vehicle software and hardware with advanced and cutting-edge

approaches.

Through this contextual backdrop, the project not only aligns with the evolving landscape

of driving automation but also seeks to push the boundaries of self-driving technology,

promising a transformative paradigm in autonomous navigation.

1.2 Goals & Objectives

For this project, a comprehensive set of objectives has been outlined which collectively

establishes the form and function of the proposed miniature smart-vehicle embedded

Suderman Electronic & Computer Engineering 10

system enhanced via the use of GPU-accelerated deep learning models. The outlined

objectives encompass the following key aspects.

1.2.1 Research and Implementation Strategy

Extensive research into existing small-scale smart vehicle systems and deep-learning

models guides the selection of optimal software and hardware components. This strategic

approach ensures the utilization of cutting-edge technology tailored for this specific

implementation. This objective is completed primarily through a literature review which

analyses various available research papers and information from similar and related

projects.

1.2.2 Smart Vehicle Embedded System

The next objective is the development of a miniature smart vehicle which leverages the

computational power of a Raspberry Pi to compute simple algorithms and simulate a typical

embedded system’s computational load. This system will serve as the foundational platform

for integrating deep learning models and ultimately provide a foundational system for the

addition of the enhanced functionality and capabilities of ML models.

1.2.3 Remote Computer-Vision Platform

This piece of the development phase involves the creation of a sophisticated computer-

vision platform. Operating separately from the smart vehicle embedded system, this

platform communicates wirelessly with the device via a Wi-Fi network connection. Utilizing

a webcam integrated into the vehicle, real-time image frames stream to external computer-

vision models, are processed, and any relevant information is returned. This acts as a

supplement to the on-board processing equipment and provides advanced computation

with minimal latency. Multiple deep-learning models are used in this platform to assess

their relative abilities and performance metrics.

1.2.4 Construction of a Demonstrative Model

The testing aspect of this project relies primarily on the construction of a small-scale

demonstrational model. This model serves as a test area where the vehicle can

autonomously navigate basic conditions which utilize both the on-board computation and

external processing. It consists of a roadway for the vehicle to follow, along with multiple

objects which must be detected by the models at an appropriate range.

1.2.5 Advanced Deep-Learning Capabilities

Beyond only operating the chosen models externally, further advancements are added to

the system. A system for receiving feedback from the models is used, likening the overall

simulated application as closely as possible to real-world environments. This feedback

Suderman Electronic & Computer Engineering 11

exists on the embedded system and consists of retrieving the modified video frames to be

applied to the vehicle’s environment.

1.2.6 System Testing and Validation

Various testing and validation procedures within the miniature model environment assess

the system's functionality. These tests ensure the reliability and capabilities of the entire

system’s operations under diverse scenarios with the goal being to maintain real-time

functionality. Comparison of the different deep-learning models is performed throughout

this objective with standard tests performed between all models and comparative

measurements of their capabilities taken.

1.2.7 Demonstration of Completed System

Ultimately, the project culminates in a fully functional self-driving vehicle. Integrated with

an embedded computer, this vehicle proficiently navigates the model environment. Real-

time video is streamed from an integrated webcam to an external system for computation

and the results returned and received on the embedded system. The demonstration

showcases the successful fusion of computer vision and object recognition technologies in

enabling autonomous navigation.

1.3 Conclusions

This project represents a significant leap forward in driving automation research,

leveraging both established best practices and cutting-edge deep learning algorithms. By

combining computer vision and artificial intelligence, it aims not only to meet its defined

objectives but also to lay the groundwork for broader advancements in incorporating

machine learning models remotely with embedded systems. The successful integration of a

miniature smart vehicle with an embedded computer not only signifies a breakthrough in

autonomous navigation but also demonstrates the practicality of deploying large ML models

in compact systems. Drawing from extensive research in self-driving technology, this

project establishes and refines best practices while introducing novel approaches to

enhance object detection, decision-making adaptability, and software-hardware

integration. These achievements not only advance the fields of computer vision and object

recognition but also pave the way for future innovations, providing new insights and

understanding in the realm of large deep learning model assisted embedded systems.

Suderman Electronic & Computer Engineering 12

Chapter 2: Literature Review

2.1 Introduction

The integration of cutting-edge technologies and established methodologies within the

research of miniature self-driving vehicles and cutting-edge deep learning models is central

to the advancement of automated driving systems and any embedded systems benefitting

from higher level computation. Rooted in a comprehensive literature review, this report

section explores foundational techniques and technologies important to the related

development steps. Emphasizing the critical role of microcontrollers, particularly the

Raspberry Pi, this introduction delves into the significance of sensors, notably camera

modules and wireless connection equipment, in enabling efficient object detection and

navigation functionalities. Furthermore, it highlights the algorithmic techniques primarily

used in the software design, with a focus on edge and line detection approaches as used in

lane detection systems. Additionally, usage of the external machine learning models is

explored with analysis on the potential for integrating cutting-edge object detection and

segmentation, albeit with challenges for implementation. Overall, this comprehensive

analysis advocates for the strategic combination of emerging technologies and proven

methodologies in advancing research on self-driving and similar embedded systems.

2.2 Critical Evaluation of Hardware Design

Analysis begins with investigation into the array of fundamental hardware component

choices made throughout related research. These components play a pivotal role in enabling

smart vehicle capabilities and must be carefully assessed prior to implementation.

2.2.1 Microcontrollers

As the foundational piece of hardware within this project, microcontrollers are compact, yet

powerful, processing units which perform calculations, analysis, and generally act as the

brains of the smart vehicle. Through the management of the various integrated hardware

components, they provide the capabilities for sensor data processing, necessary algorithms

for navigation and object detection, and control of motor functions. They are, in essence,

responsible for managing and executing the various instructions which govern vehicle

movement and overall behavior, making an educated choice highly important.

When approaching the choice of microcontroller for this application, the key factors for

consideration are performance requirements, energy efficiency, processing power, cost,

and compatibility. To conduct a review of the choices made in other similar applications,

papers and publications were broken down and analysed.

Suderman Electronic & Computer Engineering 13

Performance demands specific to smart vehicles, like real-time processing or sensor data

handling, are the first critical criteria to be met. Research by Ansari et. al. (2015) showcases

a 2-sensor system implemented on a Raspberry Pi Model B. A common choice throughout

literature, this model is a grounded choice due to its decent processing capabilities of a

quad-core ARM processor, which can strongly handle sensor data processing and

algorithms. It is also highly cost effective, has multiple connectivity options (Wi-Fi,

Bluetooth, etc.), and is backed by extensive community resources. In similar research

conducted by Shahane et. al. (2022), a Raspberry Pi (model unknown) is used for primary

computation and data processing but is supplemented via an Arduino Uno. In this

implementation, the Uno handles the car movements and communications to the motor

systems. This solution reduces the workload on the Raspberry Pi and enables more

processing power to be contributed to algorithms and interpreting sensor data. This is a

promising option; however, it is held back in some respects as more components means a

higher power draw, and no guarantee of the simplicity of integrating another complex

processing unit into the device ecosystem.

Fig. 2.1 multi-processor system implementation suggested by Shahane et. al. (2022).

Suderman Electronic & Computer Engineering 14

Further papers, including another similar research implementation by Mohan et. al. (2019),

continue to emphasize the choice of Raspberry Pi 4b for this and similar designs. Due to its

combination of processing power, versatility, and affordability, the Raspberry Pi emerges

as the ideal choice. Further, considering its ubiquitous adoption in similar related research,

it stands out as an obvious choice.

2.2.2 Sensors

By sampling and providing crucial data and information about car surroundings, sensors

act as a self-driving vehicle system’s sensory organ. These sensory components range from

ultrasonic and LiDAR (Light Detection and Ranging) sensors to cameras and many more

options, which all collect real-time information and environmental data to be sent to and

processed by integrated or external software. Primarily used within this research’s scope

for object detection and navigation, the synergy between all chosen sensors is paramount

to enabling autonomous functionality. Critical analysis of this choice is done to ensure

components picked are up to the latest standards and follow trends in technological

advancement.

Throughout the analysis of research into this area, a common theme was identified. That is,

that the most important sensor component in creating a smart-car system is the presence

of a camera module. As can be seen in work by Ansari et. al. (2015), processing of road

identification is performed exclusively through the data received from the camera module.

This approach is supported by others, such as in similar research conducted by Shahane et.

al. (2022), and Dhavalikar et. al. (2018), showcasing a clear necessity for including a camera

module in the system. As also denoted by Ansari et. al. (2015), a “Pi Camera”, or CSI (Camera

Serial Interface) Camera, is a common and recommended choice, due to its ease of

integration with Raspberry Pi’s. Other choices of camera include webcams or standalone

cameras. With these considerations, both a webcam and CSI Camera were picked for the

implementation. The webcam would be used as the primary source of transmitted video,

and the CSI camera acting as the input for processing required for line detection.

2.2.3 Other Sensors

It is important to consider other sensors to be implemented in coordination with a camera

module. One prominent choice is an ultrasonic sensor, able to provide proximity

information using high-frequency sound waves, useful for object detection. As highlighted

in the study, “Raspberry Pi Based Autonomous Car”, by Giripunje et. al. (2019), ultrasonic

sensors excel in measuring distance of nearby objects. They are cost effective and highly

accurate in close range applications, however, utilizing sensors in conjunction with an

ultrasonic can alleviate weak points, such as their short-range sensing and inability to

Suderman Electronic & Computer Engineering 15

accurately receive reflections from objects which deflect soundwaves away from the

sensor.

Assessing other potential sensors, a paper by Gazis et. al. (2021) makes considerable

contributions to the information on sensor analysis and functionality. Radio detection

sensors, suitable for medium and long-range radar applications, can replace or supplement

ultrasonic sensors. However, these are, problematically, not suitable for small applications

but suited better for full-sized vehicles. Another supplemental option, LiDAR sensors, are

useful for high-speed collection of 3D spatial information. These sensors require high

sensitivity detectors but excel in constructing models of the surrounding space. Though,

considering the cost of these systems ranges from eight to ten thousand dollars, they aren’t

a viable option. This ultimately leaves the selection of possible sensor configurations highly

limited, with cameras and ultrasonic sensors being the primary candidates. Therefore, it can

be concluded that the best possible option is a camera with the potential addition of an

ultrasonic sensor.

2.3 Critical Evaluation of Software Design

Next, it is important to critically assess software design within the context of autonomous

vehicle systems and machine learning platforms. Drawing from related research performed

on miniature self-driving vehicles, as well as real-world software implementations of deep

learning platforms, the software architectures and algorithms assessed will be essential in

deciding software factors best suited to the final product.

2.3.1 Line Detection

Line detection, the primary means by which the vehicle moves, aligns the vehicle with the

correct line on the road it is travelling on and guides its movements. Seemingly simple, many

techniques exist for this process. Focusing on research within the context of this project,

only systems which utilize data from the CSI camera module, or those with similar

specifications, have been included.

Offering a comprehensive and efficient solution in their research on designing an

autonomous car using Raspberry Pi, Ansari et. al. (2015) describes a line detection

algorithm with a focus on utilization of a fusion technique, where rather than lanes being

identified and tracked, the road size and shape is tracked, and lines painted on according to

specific parameters. This integrated approach enhances adaptability and offers improved

line detection across diverse road conditions.

Suderman Electronic & Computer Engineering 16

Fig. 2.2 Road size and shape tracking in ROI, Ansari et. al. (2015).

Similarly, other algorithms, such as in research by Shahane et. al. (2022), utilize the same

techniques to achieve results, such as the Hough Transform for line generation and

techniques such as Canny edge detection for road identification. These techniques are seen

throughout the literature and present an approach worthy of serious consideration in the

final implementation.

2.3.2 Obstacle Avoidance & Navigation

A key feature of a self-driving vehicle is to identify obstacles present in the movement plane.

Accomplishing this task will be completed through one of two main avenues:

A) Utilize hardware techniques such as ultrasonic sensors to detect objects, then on-

system algorithms to make the appropriate decisions.

B) Utilize machine learning via an off-device deep-learning platform to detect

obstructions and perform the corresponding reactions.

When choosing the methodologies and algorithms to use, critical examination regarding the

limitations of the system cannot be left out. These consist of sensor accuracy, computational

abilities, and environmental conditions, and are the primary constraints for analysis in the

following sections.

In research conducted by Day, et. al. (2019), a Raspberry Pi equipped with ultrasonic

sensors detected pedestrians and obstacles through Histogram of Oriented Gradients

algorithm and Haar-classifier algorithms. Results were good, implying the techniques used

are a viable option. One discussed setback is the outperformance of both algorithms by deep

learning methods, and points to the potential avenue of utilizing off-microcontroller

processing to complete heavier tasks. These methods will be further examined before

implementation but may provide a highly accurate approach.

2.4 Deep Learning Platform

This report section delves into the integration of a deep learning platform to enhance the

capabilities of an embedded system from a remote standpoint, presenting insights garnered

Suderman Electronic & Computer Engineering 17

from existing literature. Leveraging the power of deep learning algorithms, this approach

aims to bolster the functionality and performance of the self-driving car or any embedded

system, paving the way for novel applications and advancements. The existing body of

literature has been explored to provide a comprehensive overview of the methodologies,

challenges, and potential benefits associated with employing remotely enhanced embedded

systems.

2.4.1 Limitations and Requirements of Chosen Application

Looking first at research related to utilizing remote DNNs (deep neural networks) to

improve the computational abilities of embedded systems, the specific challenges and

requirements for the chosen application will be considered. Batzolis, et. al. (2023) in

research on the limitations and solutions to implementing machine learning in embedded

systems, states that:

“To effectively integrate machine learning into these systems, a number of

issues must be resolved, including resource limitations, data availability and

connectivity, real-time demands, robustness and dependability, safety, and

security concerns.”

Taking these points into mind, the chosen methodology and techniques must consider the

available resources on the Raspberry Pi, its connectivity abilities, and the real-time

demands of the chosen application.

2.4.2 Meta Segment Anything Model (SAM)

Finally, an array of machine learning models was analysed for application on the remote

deep learning platform. Looking first at the Meta Segment Anything Model (SAM), this deep

learning model presents an innovative approach to segmenting diverse visual elements

within an image. With this model, object detection and segmentation could be significantly

improved from what is possible on-device, as all objects in a scene are segmented

simultaneously, providing the system an elevated comprehension of scene dynamics. The

Meta SAM model is also the largest segmentation dataset to date, with “... over 1 billion

masks on privacy respecting images,” Kirillov, et. al. (2023) and could enable finer and more

precise recognition of pedestrians, and other objects, refining its decision-making

abilities. This dataset, titled SA-1B (Segment Anything 1 billion), has 11 million high quality

images with 1.1 billion segmentation masks and is a new dataset introduced in Meta’s SAM

research paper [16]. It does not contain class labels but solely consists of mask annotations

of every object in the image scene. This results in processed frames which contain high

levels of object detail and provide exemplary data for use in computer vision systems.

Suderman Electronic & Computer Engineering 18

Fig. 2.3 Showcase of the abilities of Meta’s segment anything model.

Further, the model's ability to generalize for objects in a scene, i.e., determine a plausible

class for an object while only having been trained on similar images, is impressive. This

presents an opportunity for a model to increase its understanding of input sensor data and

have a more comprehensive understanding of objects. This technique, also referred to as

zero-shot learning, is a capability of the most cutting-edge computer vision systems in place

and pushes the limits of what has been done in this specific field. Another version of this

model, “FastSAM”, has been documented by Zhao, et. al. (2023) and modifies the model from

using a Transformer architecture to using a Convolutional Neural Network architecture,

providing up to 50 times higher run-time speeds. This is promising for applications

requiring fast speeds, as this can be applied effectively to real-time applications.

Fig. 2.4 Diagram of how a machine learning model capable of zero-shot learning operates.

2.4.3 YOLOv8 (You Only Look Once, Version 8)

YOLOv8, introduced in 2023 by deep learning company Ultralytics, is the latest cutting-edge,

state-of-the-art (SOTA) model, building on previous versions to enhance performance,

flexibility, and efficiency [12]. It utilizes a neural network to predict bounding boxes and

classes and has object segmentation functionality which is similar to Meta’s SAM. Differing

Suderman Electronic & Computer Engineering 19

from FastSAM, this model is trained on the COCO (Common Objects in Context) dataset. This

set features 330k images, with 200k annotations for object detection, segmentation, and

captioning, and 80 classes used in this model’s training.

With cutting edge features, demand is high to integrate this software into any device capable

of benefitting from its capabilities. It is also capable of running in real-time, and, unlike

FastSAM, is capable of identifying and labelling detecting classes in an image. This model

provides a similarly effective and modern option for remote attachment with embedded

systems but varies in its abilities enough to offer some meaningful comparative differences.

Fig. 2.5 YOLOv8 segmentation results and performance comparison. [13]

As seen in the above figure, object segmentation and classification are possible, with the

above frame being selected from a real-time video feed. With the object segmentation head

of YOLOv8 stemming from the earlier YOLOv5, comparison of their performance provides

some insight into the relative improvements gained over the older version. Rath, S. in their

comprehensive guide to SOTA object detection, outlines some of these metrics in the table

above [13]. These are scored according to their mAP (Mean Average Precision), which is a

metric used to evaluate algorithm accuracy by calculating the average precision across

multiple classes or categories. The available YOLOv8 model sizes range from Nano, for the

model containing the lightest weight parameters, to Xtra large, for the model with highest

parameters and most input data. Lower-level versions have the highest improvement in

performance, but all versions improve by a minimum of %5 mAP score. This is promising,

as the ‘Xtra large’ model can be deployed remotely and compared to a ‘nano’ model

deployed locally on an embedded system.

2.4.4 Conclusions

In conclusion, this literature review aims to provide a comprehensive examination of

foundational technologies and methodologies used in related literature, which are crucial

Suderman Electronic & Computer Engineering 20

to the development of the chosen embedded system and deep learning platform.

Synthesizing insights from existing related research, the significance of microcontroller and

sensor choice have been underscored, and the important of performance, energy efficiency,

and real-time processing capabilities in the chosen hardware platform has been covered.

Moreover, software design methodologies have been analysed with key algorithms and

techniques for line detection and navigation reviewed, to collect insights as relevant.

Further, exploring possibilities for the integrated deep learning platform reveals the

potential to enhance computational capabilities remotely. Examining the Meta Segment

Anything Model, its subsidiary version FastSAM, and YOLOv8 has demonstrated their

promise for improving object segmentation and detection tasks from a remote standpoint.

These offer positive implications for enhanced decision making and real-time performance

capabilities. Moving forward, these insights will be leveraged to strategically implement the

following project steps and lays the foundational pieces for the fulfilment of project

objectives. Ultimately, this analysis will guide the way for the research and development of

a system to further the capabilities and functionalities of autonomous embedded vehicle

systems, or any similar embedded systems capable of benefitting from deep learning

technologies.

Chapter 3: Foundational Techniques

3.1 Introduction

This section walks through the foundational equipment used and the techniques and

knowledge required to proficiently utilize the tools and software selected. Each section

breaks down the parts involved in the overall system and explains the application and

necessary information for a quality implementation.

3.2 Microcontrollers (Raspberry Pi)

A firm grasp on the usage and application of microcontrollers, particularly the Raspberry Pi

microcontroller, is pivotal due to their necessary processing power and versatility in

managing sensor data and algorithms in the system. Furthermore, their performance and

nearly ubiquitous use in miniature smart-vehicle applications across various research

studies highlights them as an obvious choice, but successful application is benefitted by a

moderate level of background knowledge.

3.3 Sensors (CSI Camera and Webcam)

As gathered during review of related literature, CSI cameras and webcams are regarded as

crucial components for object detection and navigation. They are validated by their

Suderman Electronic & Computer Engineering 21

widespread use and effectiveness in diverse research implementations, emphasizing their

significance in providing real-time data in a lightweight form-factor. Minimal previous

experience is required, but an understanding of various camera output modifications, such

as saturation and contrast, alongside basic comprehension of web streaming techniques

benefits overall project success.

3.4 Software Design Evaluation

Experience and understanding of common edge detection techniques, such as Canny edge

detection and Hough lines, and knowledge of approaches used in the fusion of various

streams of sensor data is essential to a robust detection system. It is important to gauge the

varying viability of different approaches used in related studies and pick the approach best

suited to adaptability and diverse road conditions.

3.5 Deep Learning Models and Platform

Developing the platform for communicating and processing the information sent via the

embedded system requires forethought into the entire design methodology. Knowledge of

remote systems and computer systems which can support the various deep learning models

is a benefit, as well as some basic foundational knowledge of communication protocols.

 The Meta Segment Anything Model presents groundbreaking possibilities for object

segmentation through its advanced learning capabilities. However, its implementation

poses challenges due to its innovative yet complex nature and should be approached with

some background comprehension of deep learning and implementation in small form-

factors. Further, the YOLOv8 model previously discussed offers similar benefits and

opportunities, but should be approached in a similar manner, with thorough background

research performed into how it operates and how to deploy it on the proposed platform.

3.6 Comprehensive Roadmap

Serving as a guide for the integration of all project components and outlining the steps

involved in multiple levels of detail, experience in developing realistic roadmaps for project

completion is vital to project success. Working with the project’s supervisor, a table

estimating completion dates for project work packages (WP) was created.

Suderman Electronic & Computer Engineering 22

Fig. 3.1 Roadmap detailing estimated completion of work packages.

3.7 Conclusions

In summary, this section highlights the essential equipment and techniques needed for

developing the autonomous smart vehicles embedded system and remote deep learning

platform. Understanding microcontrollers, such as the Raspberry Pi, and the role of CSI

cameras and webcams in object detection and navigation is crucial. Knowledge of common

edge detection techniques and sensor data fusion is necessary for software design, while

familiarity with deep learning models like the Meta Segment Anything Model and YOLOv8

requires background comprehension. Finally, developing a comprehensive roadmap is vital

for successful project integration. The next chapter on System Design will begin to outline

the integration and application of these foundational elements within the context of creating

a miniature self-driving vehicle system, thus giving the reader further insight into the

specifics of the project.

Suderman Electronic & Computer Engineering 23

Chapter 4: Proposed System Design

4.1 Introduction

This section introduces the overall system design, including a block diagram which

illustrates the integration of crucial components vital for completion of the embedded

system and deep learning platform. This visual representation outlines the framework of

the vehicle's autonomous system, highlighting the interconnectivity among these

components and the broader DL platform. Effective integration stands as a key factor in

achieving the defined work packages, necessitating an evaluation of component selections

and their potential integration. The exploration of each system block, namely the Power

Supply, Sensors, Microcontroller, GPU PC, and Chassis & Motor System, offers detailed

insights into their specific functionalities and how they interact. Finally, a system

component diagram visualizes the physical combination of these components, providing

further detail on their role within the vehicle system.

4.2 System Block Diagram

Below is a system block diagram which illustrates how fundamental project components

such as microcontrollers, sensors, and software modules work together for this project’s

autonomous miniature self-driving vehicle and deep learning platform. It visually maps the

integration of components, forming the basic framework for the complete autonomous

navigation vehicle and system.

Fig. 4.1 System block diagram illustrating vehicle software and hardware integration.

Suderman Electronic & Computer Engineering 24

First, a brief description of each component and an overview of the entire system will be

given, before diving further into each specific block and the proposed specifications of each.

The Raspberry Pi microcontroller will be the main hub for information exchange, and

ultimately control and direct the entire ecosystem. It receives both camera streams, the

webcam and CSI camera, and either inputs it to the line detection algorithms, for the CSI

camera, or a hosted HTML page of the video stream, for the webcam. The line detection

algorithm processes this input and provides the appropriate directions to the chassis and

motor system, which control vehicle movement. The frames sent to the HTML webpage are

hosted there, waiting for the deep learning platform, i.e., the graphics processing platform

(GPU) computer, to initiate a connection and retrieve them for processing. After processing,

the GPU PC hosts its own HTML page of results, which the Raspberry Pi initiates a

connection with and receives them as a stream of frames. In essence, these components

combined compromise the basic system as a whole and its operation, and the following

section will further elaborate on each component’s specifics and details.

4.2.1 Microcontroller – Raspberry Pi 4b

The Raspberry Pi microcontroller serves as the central processing unit and operational core

within the entire system. Its primary function encompasses the control and coordination of

the hardware components and software modules used in navigation. The microcontroller

will perform all computation and process incoming sensory data from integrated sensors to

facilitate real-time environmental perception. This processing involves data interpretation,

analysis, and decision-making algorithms, crucial for navigation, object detection, and

avoidance.

Furthermore, the Raspberry Pi microcontroller oversees the execution of control

commands, managing motor functions and steering mechanisms in response to processed

data. This enables physical movement and manoeuvring of the vehicle within its

environment. Its role extends to facilitating communication between software components

which ensures seamless interaction and synchronization between the sensor, processing,

and control systems. This integration and communication capability are pivotal for the

system's cohesive functioning, allowing accurate responses to dynamically changing

environmental conditions.

Choice of microcontroller was again largely based on related research, but also due to the

versatility of the Raspberry Pi. Its open-source architecture and diverse compatibility with

many software libraries offers flexibility in implementing and refining algorithms for

navigation, object detection, and decision-making processes. Consequently, the

microcontroller serves as the foundational element to the system and is essential for

realizing the project outcomes.

Suderman Electronic & Computer Engineering 25

4.2.2 Power Supply

Beginning with the power supply system, the vehicle will be operating off rechargeable

Lithium-Ion batteries. These batteries will be attached underneath the vehicle chassis, and

will power the microcontroller, sensors, and chassis/motor system. The type and size of

battery was predetermined due to the chassis constraints, and will consist of two Samsung,

ICR-18650, 3.7V, Lithium-Ion Rechargeable Batteries. These batteries have a 2.15Ah

capacity, recharge in approximately 3 hours and, based on current testing, can power the

vehicle for approximately 1-2 hours per charge cycle. These batteries will sufficiently power

the vehicle, and, due to their connection with the microcontroller via the chassis circuitry,

don’t require any modifications or additional componentry.

4.2.3 Sensors

Based on the previously performed literature review, choice of sensors focuses on which

cameras are best suited to the desired project outcomes. For its ease of integration, low

computational load, and availability of documentation, the CSI camera was chosen to

implement the classical technique line following algorithms. It provides a low power and

easy to implement option, good for simple uses. The webcam was integrated into the system

design as it became clear that a higher resolution camera which could be adjusted

separately from the line following camera was necessary. For this reason, a C920 Logitech

webcam was chosen, which offers high framerates (60FPS), resolution (1080p), and

automatic focus. This serves to enhance the output of the deep learning models and

improves the overall abilities of the deep learning platform.

4.2.4 Object Recognition and Segmentation Models

An object segmentation model is a deep learning algorithm capable of analysing images,

recognising objects, and separating them from the other objects in a scene. Applying these

capabilities to the current self-driving system gives a greatly increased level of

comprehension which aids in decision-making and vehicle safety. This system will operate

on the microcontroller, with sensor data from the camera being input into the algorithm

and returned wirelessly. Algorithm output can then be processed by the microcontroller for

any unexpected object, unseen conditions, or any data useful to the embedded system. In

future systems, this model could be used exclusively for self-driving decision-making,

negating the need for multiple cameras and visual processing techniques.

4.2.5 Chassis & Motor System

Finally, operation of the chassis and motor system will proceed according to the data

received from the microcontroller. These components come from a preconfigured kit which

provides the chassis, which is a PCB (printed circuit board), with attached servo motors

controlling the wheels. Built for use with a Raspberry Pi, it is installed onto the kit PCB and

Suderman Electronic & Computer Engineering 26

communication is performed through the pin headers on the RPI, which are connected to

the chassis circuit board. This board then connects to the 4 motors and communicates using

software which comes with the kit and can be modified to improve or alter its functionality.

No processing is done by the chassis circuit board or motor system, and they only respond

reactively to the microcontroller commands. This is the final step in the navigation process,

through which the system will navigate autonomously through its environment.

4.3 System Component Diagram

The system component diagram serves as a visual representation of the entire system,

depicting the interconnectedness and integration of physical components within the

autonomous vehicle system. The illustrative diagram below outlines the fundamental

hardware pieces, including sensors, microcontrollers, and software modules, showing their

functional relationships and dependencies. Ultimately, this illustrates the chosen embedded

system in its entirety, and demonstrates the feasibility of integrating a remote, GPU

accelerated deep learning platform into an embedded system.

Fig. 4.2 System component diagram illustrating integration of physical components.

4.4 Conclusions

In summary, this section introduces a system block diagram that illustrates the integration

of pivotal components crucial for enabling autonomous navigation in the proposed self-

Suderman Electronic & Computer Engineering 27

driving vehicle. The visual representations presented give the framework of the vehicle's

autonomous system, emphasizing the interconnections among these components.

Successful integration is imperative for achieving the work packages, warranting a

thorough evaluation of component selections and their integration potential. The detailed

exploration of each system block—Power Supply, Sensors, Microcontroller, Object

Segmentation Model, and Chassis & Motor System—provides comprehensive insights into

their specific functionalities and mutual interactions. Additionally, a system component

diagram further explains the physical amalgamation of these components, offering a

detailed perspective on their roles within the vehicle system.

Chapter 5: Feasibility Testing & Proof-of-Concept

5.1 Introduction

An initial project implementation was first pursued, aiming to demonstrate project

feasibility and develop a proof-of-concept system containing preliminary versions of the

desired product. This stage consists of foundational steps, such as assembling the vehicle

hardware and completing its setup with the attached Raspberry Pi. The subsequent

sections document these steps, outlining all the work done in achieving a stable initial state

for the vehicle which proves the proposed design a viable pursuit and is critical for

integrating and advancing the project's more sophisticated work packages. This phase

represents the foundation which the project's future advancements and functionalities are

built upon and lays the groundwork for these subsequent project phases.

5.2 Hardware Setup & Testing

The system hardware consists of the sensors used for data capture, car chassis which

consists of header pins and a circuit board connected to the microcontroller, LEDs which

can be controlled, and the 4 motors which control vehicle movement. The following section

details the setup of these components.

5.2.1 Hardware Assembly

The base chassis kit consists of a printed circuit board (the chassis), 4 motors, 2 servo

motors for controlling the angle of the CSI camera and various components for securing the

pieces together. Not all these components are used in the final system, but initial setup

includes assembling it all into the predefined form before modifications could be made. The

assembly of these parts involved following a guide provided with the kit and proved

relatively simple. The chassis PCB is preassembled with preselected chips such as the

PCA9685, an I2C bus controller used as a 16-channel PWM (pulse-width modulation) servo

Suderman Electronic & Computer Engineering 28

driver for movement. This chip controls all the servos on the device, and the block diagram

and pinout for it are below. Examining this chip and the other on the PCB gives a deeper

understanding of how the board itself works and is an important step in gaining complete

comprehension of the entire system.

Fig. 5.1 Block Diagram and Pinout for PCA9685

However, problematically, there were issues with the included servo motors, which

ultimately needed to be replaced and lengthened the assembly process. When the kit was

assembled, the Raspberry Pi could be connected and provide computational abilities.

Connection of the microcontroller to the chassis and sensors was simple, with connecting

pins and headers between the chassis and board being the only requirements. Finally, with

the hardware assembly complete, the power supply was connected, and the full system

tested. These tests were successful, leaving the vehicle in a ready state for the advancements

proposed in the project work packages.

Fig. 5.2 Model of initial car kit configuration after assembly

After the kit was assembled, it was deemed necessary to make some modifications which

would accommodate the additional webcam and remove any unnecessary components. So,

Suderman Electronic & Computer Engineering 29

the components which housed the CSI camera and other unnecessary components were

removed, leaving a more efficient system better suited to capture high quality video and

communicate wirelessly. Seen below, the result was achieved by placing the Logitech C920

webcam onto the top of the chassis and orienting the CSI camera at a 45-degree downward

angle, facing the forward direction of the vehicle.

Fig. 5.3 Completed vehicle hardware setup.

With these modifications complete, the system hardware reached the completed assembly

stage. To verify the system’s capabilities, 4 tests of the basic functionalities were performed.

Seen in the table below, these consist of a system boot, where the operating system and all

basic system software are run, a motor test which involves a simple driving maneuver, a

camera test to capture photos with both cameras, an LED test to blink the on-board LEDs

included in the kit, and a test of how long the chosen batteries can power the system.

System Boot Motor Test Camera Test LED Test Battery Test

Operating system

booted successfully

with no issues.

All 4-wheel

servos are

working

correctly.

Photos taken with

no issues, manual

focus on CSI camera

needs adjustment.

LEDs operate as

intended.

Batteries work as

intended and have

an average battery

life of 47 minutes.

Table 5.1 Results of the 4 system hardware tests performed.

In conclusion, all the hardware tests were passed successfully, with the only necessary

change being a slight focal change for the CSI camera. Since these cameras are simple, they

don’t have automatic focus, but manual adjustments can be made by twisting the lens. This

adjustment gives a clearer view of the road in front of the vehicle and thus provides clearer

input data for the line following algorithms. With the hardware setup and testing complete,

Suderman Electronic & Computer Engineering 30

development of the software components and development of the relevant algorithms

begins.

5.3 Software Setup & Testing

The software setup and testing for this phase focuses on installing and configuring the

operating system and necessary packages to perform some preliminary tests on the system.

This includes running demo code provided by the company supplying the chassis kit,

reviewing this code for future changes, and establishing the foundation for later

development.

5.3.1 Operating System & Headless Connection

The software setup beings by installing a stable operating system on the Raspberry Pi. To

do this, the latest version of the Raspberry Pi operating system was installed and configured.

Specifically, the 64-bit version of the Raspberry Pi OS was selected, which is a more

computationally powerfully version, providing better compute speeds than the 32-bit

version. To connect to the microcontroller wirelessly, headless setup was configured. This

involves enabling it in the configuration settings of the microcontroller and utilizing the

RealVNC program on an external computer for connection. This requires enabling wireless

support on the Raspberry Pi, configuring the IP address, and establishing a connection

between the two devices.

Suderman Electronic & Computer Engineering 31

Fig. 5.4 RealVNC Remote Connection to Raspberry Pi

Seen above, the RPI is added as a client connection in RealVNC using it’s IP address. This

address is found by executing the ‘ifconfig’ command in a terminal and returns various

pieces of information on the RPI's network connection. With this setup complete, the system

could be operated remotely, and the operating system was working properly.

Suderman Electronic & Computer Engineering 32

5.3.2 Software Testing

The car chassis kit is supplied with software to communicate with and control the sensors

and motors. These files are a starting point for developing the algorithms but are first used

to connect the RPI with the chassis components. Establishing these connections involves

running various Python scripts included in a GitHub repository supplied by the kit provider

company [14]. Once this repository is downloaded, scripts corresponding to different pieces

of hardware, i.e., the sensors, lights, and motors, are run to test the components and ensure

they work properly.

Fig. 5.5 Repository of code files provided in kit and LED test.

All the provided test files are tested and run successfully, meaning the vehicle portion of

proof-of-concept setup is finished. To gain a deeper understanding of how the provided

system software works, some time is spent parsing the provided software files. To

understand how the motor control works, the PCA9685 python script is examined (see

Appendix B). The program defines a class called PCA9685, which controls the 16-channel

PWM servo driver. This chip is a popular PWM controller and is commonly used to drive

servos and LEDs. The program uses the ‘smbus’ library to communicate with the chip via

the I2C protocol. It defines methods for writing and reading data from registers on the chip,

setting the PWM frequency, and setting the duty cycle, the time a circuit is on and off, for

individual channels. This is the most important code to comprehend, as it establishes

connection to the motors, necessary for the later addition of line tracking functionality. With

this stage finished, software setup and testing are complete.

5.3.3 Deep Learning Platform Testing

Lastly, the deep learning platform is tested to verify the model functionality. This platform

consists of a computer with a GPU operating separately from the device and communicating

via a network connection. To test that they would function, the two models, FastSAM and

YOLOv8, were downloaded to the computer. The appropriate libraries were installed, and

each was run with out-of-the-box settings on a few images. FastSAM was tested first on the

two input images below. The left image segments everything and shows positive results as

Suderman Electronic & Computer Engineering 33

it accurately segments all objects in the image. The right image is prompted with the text,

‘The brown dog’, and segments the left dog quite accurately.

Fig. 5.6 Test images for FastSAM.

YOLOv8 is also tested, with two versions of it being run. Both are the ‘Xtra’ large versions,

requiring more processing power but giving better results. The first output in the figure

below is the version with the additional capability of segmentation, and the second is the

slightly lighter version without. Both were processed successfully and produced good initial

results. With these tests complete, the proof-of-concept phase is successfully concluded.

Fig. 5.7 Test images for YOLOv8 and YOLOv8-seg.

5.4 Conclusions

As explored, this project's initial stages centre on system setup and software testing,

ensuring the establishment of the operating system on the Raspberry Pi and validating

software functionalities controlling sensors and motors. Hardware assembly involves the

construction steps and troubleshooting, overcoming challenges with servo motors to

finalize the chassis construction. Successful testing validates the entire system's

functionality, marking a milestone and preparing the vehicle for the upcoming

implementation of more complex project components and functionalities. These

foundational phases form the cornerstone for the project's evolution and expansion into

Suderman Electronic & Computer Engineering 34

more advanced work packages, with the next section detailing the specifics of project

implementation.

Chapter 6: Core Project Implementation

6.1 Introduction

With the desired project work packages defined and the overarching design developed in

the previous sections, the core blocks of the implementation are begun. This section focuses

on the methodology used in developing the line following algorithms, the deep learning

platform, and the demonstrational model where all can be tested. These preliminary

implementations will be later refined but are brought to a core development stage upon

which later analysis, enhancements, and refinements can be made. The first stage in

achieving the core aims and objectives outline for the project is the line following system

and its methodology.

6.2 Line Following Algorithm Design

The design for the line following algorithm is relatively simple and utilizes classical and

simple algorithmic techniques to maintain a reasonable load on the embedded system. A

block diagram of the proposed design is displayed below. Frames are first received by the

program from the CSI camera, which is installed at a 45-degree downward angle at the front

of the car. This keeps the region of interest (ROI) for the system within approximately 0.3

meters in front of the vehicle. This serves to reduce false positives on the line detection.

Fig. 6.1 Block Diagram of line following design.

Each video frame is then processed through the line detection algorithm to detect all lines,

then reduced to the top 6 lines by length and confidence. The average position of the lines

is then calculated to find the midpoint between them. This tells the system if the camera,

and thus the car, are off-centre from the desired line by comparing its position to the centre

of the frame. Finally, the distance between the average and the true frame centre are

Suderman Electronic & Computer Engineering 35

calculated and the car’s position is adjusted to centre it on the line. With the block diagram

assembled, developing the software implementation is the next step.

Fig. 6.2 Showcase of image conversion from CSI camera to line position.

6.3 Line Following Software

Developing the software for the line following mechanism utilizes suggestions from related

research and relies on classical techniques. The techniques chosen are like those suggested

in previously reviewed research by Shahane et. al. (2022) and are considered classical

computer vision techniques because they are traditional methods and algorithms used for

analysing and processing visual data in computer vision tasks. The designed algorithm is a

function, displayed below, which steps through each necessary step described in the

following sub-sections.

Fig. 6.3 Edge detection function code.

6.3.1 Colour Conversion

These steps are all constituent parts of the larger function which encapsulates the entire

line generation process. The initial step in the ‘edge_detect’ function involves converting the

input video frame from the original colour-space to grayscale and is done using the

‘cv2.cvtColor’ function. This function is provided by OpenCV, a popular computer vision

library for Python which is used extensively throughout this project. This conversion step

Suderman Electronic & Computer Engineering 36

simplifies the subsequent processing steps as it reduces the image’s computational

complexity and changes the focus to the intensity of variations in the image.

Fig. 6.4 Video frame before and after color conversion.

6.3.2 Gaussian Blur

After greyscale conversion, a Gaussian blur filter is applied via the ‘cv2.GaussianBlur’

function, which smooths out the noise and fine details in the image. A kernel size of nine by

nine is used, which determines the extent of blurring, with larger sizes resulting in stronger

smoothing effects and smaller kernels providing more fine details in the image. The

blurring operation serves to improve the accuracy of edge detection by reducing high-

frequency components in the image and their influence.

Fig. 6.5 Video frame before and after Gaussian blur.

6.3.3 Binary Thresholding

Once the Gaussian blur filter is applied, the next stage is applying a binary thresholding

operation on the blurred greyscale frame. This is done using the ‘cv2.threshold’ function,

which is also supplied by the OpenCV library. This function works by taking threshold

values, set to 100 and 255 in this case, and segmenting the image into foreground and

background regions based on these values. Effectively, this modifies all pixels in the image

to be either a fully white value or fully black value. The arguments define that any pixel

values below 100 will be set to 0 (black), and anything above will be set to 255 (white). This

Suderman Electronic & Computer Engineering 37

enhances the contrast between edges and non-edges, which prepares the image for the

subsequent stage of edge detection.

Fig. 6.6 Video frame before and after binary thresholding.

6.3.4 Canny Edge Detection

Next, Canny edge detection is performed on the frame after thresholding using the

‘cv2.threshold’ function. This is a classical technique for edge detection and works

accordingly:

1) First, the magnitude and direction of intensity changes as each pixel is examined.

2) Next, suppression of edge size is performed to thin edges and improve accuracy.

3) Then, thresholding is done to remove any lines below or within a range of values.

4) Finally, edge pixels are connected and refined using hysteresis to give the result.

The result after this stage is a binary image where edges are represented as white lines on

a black background. The parameters (70, 80) specify the lower and upper thresholds and

control how sensitive the filter is to edge detection.

Fig. 6.7 Video frame before and after Canny edge detection.

6.3.5 Hough Line Detection & Line Filtering

The final filter is applied to the Canny edge-detected frame and utilizes the

‘cv2.HoughLinesP’ function. This is an important filter to use after edge detection, as this

Suderman Electronic & Computer Engineering 38

algorithm analyses patterns of edge pixels to identify lines in the image. It returns the

detected lines as line segments which are defined by their endpoints. It is adjusted using

various parameters, with the most important being ‘minLineLength’, which sets the

minimum required pixel length for a line to be drawn (set to 150), and ‘maxLineGap’, which

is the maximum value of pixels between two edge pixels to still be considered a line (set to

90). This is the last step in the edge detection pipeline and provides a selection of plausible

lines to be used in decision-making for the line following algorithm.

All the edge detection filter steps are complete, but the lines still require some parsing to

improve their usability. Done in the main section of the program, these lines must be

reduced to only those important for tracking the line in front of the vehicle. To do this, the

first step is reducing the number of lines on the screen to only include the four most

prominent. Testing shows this as the ideal number of lines for this scenario as the detected

road, when it curves, needs more than one line section to capture the whole area.

Fig. 6.8 Video frame before and after Hough line detection and filtering.

Further, horizontal lines are also filtered as to negate false positives. To do this, a

trigonometric function is used, calculating whether a given line segment is approximately

vertical based on its angle with respect to the horizontal axis and a specified angle threshold.

The arctan function below calculates the angle of the line segment with respect to the

horizontal axis in degrees. If the absolute difference between this angle and 90 degrees is

less than a specified angle threshold variable, the line segment is treated as vertical.

Fig. 6.9 Function to determine angle of line segment with respect to horizontal axis.

Suderman Electronic & Computer Engineering 39

6.3.6 Integration with Chassis

With the line tracking algorithm complete, integration with the chassis system to control

the vehicle is the next step. Before starting development, designing a decision tree to outline

the steps and decisions the vehicle makes must be completed.

Fig. 6.10 Decision tree of car movement design.

A new function, “check_vehicle_position’, is instantiated to check if the average line’s

midpoint is within a defined center margin of the image center. If within the margin, the car

moves forward. If the line is left/right of center the car moves left/right to center the frame.

These movements are done by calling other functions which control vehicle movement

using modified versions of the predefined software supplied with the chassis kit. These

functions make a call to a PWM class which interprets and sends the appropriate signals to

the motors. The figure below demonstrates setting the wheel’s movement in the ‘move_left”

function, which sets the two right wheels to a duty cycle of 1500, and the left wheels to 0.

The right wheels then move at this speed for 2 seconds, pivoting the car left as the left

wheels are not moving.

Fig. 6.11 Function defined to turn the vehicle left.

Threading is also necessary and allows each movement function to operate independently

and asynchronously. This means that if, while changing direction, the center moves back

within the margin, the function to move forward can begin, stopping the state of the move

left function and keeping it from over-adjusting the vehicle angle. This completes the logic

Suderman Electronic & Computer Engineering 40

for the self-driving portion of the project, but still requires testing to verify its performance

and identify potential issues.

6.4 Deep Learning Platform Design

With line tracking complete, the next project stage focuses on designing and developing the

deep learning platform: a separate computational system integrated and communicating

wirelessly with the embedded vehicle system. This platform's aim is to enhance the

embedded system's abilities and, more importantly, showcase the feasibility and process

involved in integrating two such systems. The main objectives of this work package are to

receive data wirelessly from the vehicle, process this data using large cutting-edge deep

learning models, and perform testing and comparison against the standalone capabilities of

the edge device. This section documents that process, beginning with a closer examination

of the chosen models.

6.4.1 Chosen Models and Purposes

As discussed in the literature review previously conducted, the choices of models have been

filtered down to the final choices of the FastSAM and YOLOv8 models. The reasoning behind

picking these models is twofold. Firstly, they are both new and cutting-edge models, both

being released in 2023 and already having widespread adoption in the computer vision

community. Secondly, they both offer large model sizes with two complex but separate data

sets (SA-1B and COCO-128) and different applicable use-cases.

6.4.1.1 FastSAM

Each of these models offers different abilities and benefits. FastSAM can segment all the

objects in an image simultaneously, which is otherwise not possible with other models. It

can also generalize class attributes of unknown objects presented by comparing them to

known classes. It can also segment objects via text prompt, making it useful for custom

scenarios without any necessary custom training. This combination opens the door for

unique applications, such as:

Suderman Electronic & Computer Engineering 41

Endless further examples exist, but this selection demonstrates the uniqueness and

applicability of such a model and why it warrants application to deep learning platforms.

The one drawback of this model is, since it is a lighter version of the base SAM model, it

cannot label objects it identifies but, rather, counts them and identifies them by count

number. To supplement this lack, and provide further comparative analysis, the YOLOv8

model will also be examined, tried, and tested.

6.4.1.2 YOLOv8

The YOLOv8 model is also able to run in real-time and offers varying sizes of the model

which have differing levels of computational load and processing ability. A version with the

addition of object segmentation also exists and is identified by the ‘-seg’ suffix placed after

the size variant. The table below shows a comparison of the metrics of these models.

Model mAP Val Speed A100

TensorRT (ms)

Params (M) FLOPs (B)

YOLOv8n,

YOLOv8n-seg

37.3,

36.7

0.99,

1.21

3.2,

3.4

8.7,

12.6

YOLOv8s,

YOLOv8s-seg

44.9,

44.6

1.20,

1.47

11.2,

11.8

28.6,

42.6

YOLOv8m,

YOLOv8m-seg

50.2,

49.9

1.83,

2.18

25.9,

27.3

78.9,

110.2

YOLOv8l,

YOLOv8l-seg

52.9,

52.3

2.39,

2.79

43.7,

46.0

165.2,

220.5

YOLOv8x,

YOLOv8x-seg

53.9,

53.4

3.53,

4.02

68.2,

71.8

257.8,

344.1

Table 6.1 Metric comparison of different available YOLOv8 models. [15]

Across the board, it is apparent that, while similar, the non-segmentation version performs

better in all metrics. This is to be expected as increased computational load is applied by

this additional capability. However, the computational cost increase is generally reasonable

in most cases. The Mean Average Precision (mAP) value evaluates the precision and recall

over multiple classes and gives a single scalar value which summarizes performance across

all classes. An increase of less than 1 percent is seen, which is impressive as this is primarily

the most important metric, defining how well object classes will be recognized. Next,

inference speed when the model is deployed on an NVIDIA A100 GPU using the TensorRT

optimization framework is compared, measuring time taken to process input data and

generate the output predictions. The segmentation values fall within a small margin of the

base version, with a slight increase seen with increases in model complexity.

Suderman Electronic & Computer Engineering 42

The Params column refers to the number of parameters for the model, measured in millions,

with each segmentation version again falling slightly behind the base version. Finally, the

FLOPs column, measured in billions, gives the number of floating-point operations per

second, and quantifies the computational workload of the model, indicating its

computational efficiency. With an increase in model size, the difference in FLOPs lessens,

with a ~30% difference for the ‘n’ model and a ~25% difference for the ‘x’ model. Ultimately,

this means that a larger segmentation model will require less power respective to the

smaller models which is an important metric to consider for power savings in small edge

devices.

Looking briefly at some proposed uses of this model, numerous options are available. In the

realm of self-driving vehicles, one utilization is the improvement of pedestrian, road, and

street sign detection. Object detection has long been used in these systems, but the addition

of segmentation adds another layer of comprehensive data to be processed. This data can

be used to understand to a greater extent the dimensions and characteristics of the road,

more accurately measure object depth, and improve system comprehension.

Fig. 6.12 Proposed use of YOLOv8 segmentation in a self-driving application.

6.4.2 Technical Details

Development of the deep learning platform starts with the initial setup of a computer on

which to run the models. An available computer was chosen with a GPU and CPU capable of

small-scale machine learning tasks and has the follow specifications:

• NVIDIA GeForce GTX 1080 Ti 11GB GPU

• AMD Ryzen 7 1700x 3.4GHz 8-Core Processor

Suderman Electronic & Computer Engineering 43

This setup is considered a mid-range deep learning system, suitable for tethered wireless

application with many systems, and is ideal for remote acceleration of embedded systems.

The first step in setting up the models to operate on this system is downloading and

configuring the models, their required packages, and pretrained model checkpoints to use

for inference. These model checkpoints are pretrained weights provided by Ultralytics

which use the previously described datasets and contain all the required information to

support inference “out-of-the-box”, i.e., without needing to train them using custom data.

For the extent of the feasibility testing in this project, these checkpoints are what are used

for testing and their default capabilities what is assessed. For the design of the software

using these models, the 4 following objectives are the focused outcomes:

1) Communicate with the embedded system wirelessly.

2) Communicate with the embedded system in real-time.

3) Receive and return data to the embedded system.

4) Improve the functionality of the embedded system.

Communicating wirelessly with the embedded system is a cornerstone of this research, with

potential successful results demonstrating the feasibility and applicability of the idea. This

communication must also be performed in real-time (i.e. within a specified time constraint

of less than 1000ms) to ensure that this system can react appropriately to environmental

changes. Return of data from the platform to the embedded system enables this decision-

making and must ultimately improve the functionality of the embedded system. With these

key points defined, software development begins.

6.4.3 Software Development

Based on the system block diagram covered in section four, the platform collects image

frames from a locally hosted HTML page of the video stream, processes them, and then hosts

the processed frames on a separate HTML video stream webpage. The RPI is then able to

collect these frames and utilize them in various ways on the embedded system. The option

of returning commands or intelligent decisions to the RPI rather than video was considered,

but for the core implementation this was decided against to keep the scope manageable.

Referring to multiple code repositories of example code and documentation supplied by the

developers of FastSAM and YOLOv8, the base program to run inference on the video stream

was written [18][19]. A separate Python script for each model captures the video stream

from the specified localhost URL of the RPI’s IP address on port 8000. Each frame is

processed using the pre-trained FastSAM and YOLOv8 models to segment all objects in the

frame and detect objects respectively. The FastSAM script overlays detected object masks

onto the original frame, which highlights the detected objects in the video stream, while the

YOLOv8 model overlays masks and bounding boxes for each detected class. The processed

Suderman Electronic & Computer Engineering 44

frames, with overlaid masks and bounding boxes, are then sent to a local host HTML page

of the PC’s IP address on the same port. These are uploaded in real-time and can be accessed

by the RPI so long as it is on the same network. This video stream processing continues until

the user interrupts the stream by pressing the ‘q’ key, which terminates the program and

releases the model inference program. With the core features of the deep learning platform

complete, it can be integrated with the vehicle design to ensure its functionality. This proved

successful, with all the scripts successfully running simultaneously.

Fig. 6.13 Demo of all software scripts running simultaneously on the embedded system.

In essence, the software setup consists of 4 primary scripts which control operations on the

embedded vehicle system and on the deep learning platform. These are:

1) Line following algorithms on vehicle system.

2) Webcam stream to local host web server from webcam on vehicle.

3) Frame capture and inference on deep learning platform.

4) Stream of model output to local lost web server.

These four parts make up the greater integrated ecosystem between the embedded device

and remote computation platform. This integration provides a seamless mechanism by

which the processing power of small edge devices can be magnified greatly to improve and

enhance a myriad of preexisting systems. Next, the demo model design showcases the

testing environment and the chosen criteria for evaluation.

6.5 Demo Model Design

To demonstrate the abilities of the integrated system and its performance, a demo model

must be designed. The core implementation concept for the model involves a basic “road”

for the vehicle to follow which consists of white A4 paper with ~2cm black lines printed

vertically on each page. The vehicle follows an approximately 2-meter track, stopping at the

end, i.e. where no lines are present. The line tracking and streaming software both work

Suderman Electronic & Computer Engineering 45

simultaneously, and real-time video feed is transmitted from the embedded device and

processed output returned to the embedded device.

Fig. 6.14 Vehicle line following demo on the test track.

The core model for the demo only has curved lines at less than 45 degrees to the previous

line segment. Further improvements may later be made regarding the system’s capabilities,

test criteria, and refinements. Ultimately, the core implementation stands primarily as a

demonstration of the abilities of the entire system and shows the feasibility of adding

additional software for deep learning platforms while maintaining high edge device

performance.

To pick ideal criteria for analysis, research has been conducted regarding performance

testing of embedded systems and machine learning on edge devices [21][22]. The selected

criteria are:

• Model Response Latency and Inference Speed.

• Video Feed Resolution and Frames per Second.

• Ability to identify objects presented, such as stop signs and pedestrians.

These criteria encapsulate the critical performance needs of embedded systems and are

commonly used in similar comparisons found in research.

In designing the demo model, the focus is on creating a simplified yet representative

environment showcasing all capabilities of the integrated system effectively. The model

aims to demonstrate line tracking functionality over a manageable distance through the

proposed track, but the scope for the model leaves room for further refinement and

enhancement. The following sections will evaluate the performance of the system via the

specific criteria derived from research on similar embedded systems. This sets the stage for

the subsequent section which focuses on analysis of results and refinements of the project.

Suderman Electronic & Computer Engineering 46

6.6 Conclusions

In conclusion, the development of the entire system consists of line following algorithms, a

deep learning platform, and a demonstrational model. It represents advancements in the

realm of embedded systems and the feasibility of their integration with external

computational accelerators. The outlined methodology has provided a framework for the

design and implementation of core project components and sets the stage for subsequent

analysis and refinement. The evaluation of the system against chosen criteria will offer

valuable insights for further optimization and innovation in this research field and

ultimately aims to drive advancements in real-world applications.

Chapter 7: Results & Refinements

The constituent parts of the video streaming process have been monitored and analyzed to

collect data on the model inference speed, ideal video feed resolution, frames per second,

and total latency for frames to be sent and returned. The following sections explore these

results and provide analysis, potential refinements, and conclusions.

7.1 Deep Learning Platform Performance

The table below lists the metrics sampled for the analysis of the deep learning platform.

Looking first at connection latency, this metric measures the time between the RPI

capturing a frame and receiving the processed frame back on the RPI. As this is a local host

connection, most latency comes from the time it takes to process the image and

capture/return the image in the software. These values fall in the range of 500ms to

1000ms, which keeps within the previously specified real-time requirements of 1000ms for

the system. The frames streamed were at an FPS (frames per second) of 30 and were

returned around 27FPS and 28FPS for FastSAM and YOLOv8x-seg respectively. These are

ideal speeds, with very little data loss being seen. The webcam stream is, however, capped

at 30 FPS, with the reduction in FPS being due to buffering issues and lag in frame

transmission.

Table 7.1 Deep Learning Platform performance metrics.

Suderman Electronic & Computer Engineering 47

The inference speed, how long it takes the model to process and overlay masks on the

original image, is very quick for FastSAM which segments 45-50 simultaneous objects in the

frame at speeds of 8ms to 11ms. YOLOv8 processes slower at an average speed of 31ms but

is still within the ideal speeds of less than 100ms. All processing and inference tasks were

performed on the frames at a resolution of 640x480 pixels. The maximum framerate can be

estimated with these inference results, with FastSAM able to reach a potential ~90FPS, and

YOLOv8 potentially able to reach ~32FPS. This is calculated by dividing 1000ms by the

inference speed of each model to give the total inference count per second.

Finally, the detection abilities for the models were tested, with the furthest distance an

object could be detected at, and the confidence value (for YOLOv8) being recorded. For this

test, the images seen in the figure below were used by printing them each onto an A4 sheet

of paper and slowly increasing their distance from the camera until they were no longer

detected. These distances were then measured and an average of five tests taken. The

images were printed to-scale with the car, the stop sign measuring 15cm top to bottom and

the pedestrian scene measuring 14x7cm. As the model car is at a scale of approximately

1:15 (for an average car with length of 4.5m [23]), the size of stop sign and pedestrian scene

were scaled accordingly.

Fig. 7.1 Stop sign and pedestrian photos used in testing.

Results for the models show that both can identify the objects presented at an average

distance of 0.55 and 1.7 meters. To obtain these averages, 5 measurements for each object

were taken, which can be seen in the plot below. These measurements were taken under

the same conditions and demonstrate each model’s variability in detection range which,

while small, should still be considered for applications.

Suderman Electronic & Computer Engineering 48

Figure 7.2 Comparison of the detection distances of the pedestrian and stop sign images.

FastSAM was able to segment the person image at a maximum distance of 1.9m, which is

significantly further than the other measurements and shows great promise for use in tasks

which involve segmenting distant or small objects. The other measurements were relatively

similar, with YOLO detecting stop signs the furthest, followed by pedestrians, and finally

FastSAM detecting stop signs.

FastSAM does not have confidence values, as it only segments and doesn’t classify, but

YOLOv8 had average confidence percentages of 32% for the stop sign and 28% for the

pedestrian measurements. These confidence values indicate the model's degree of certainty

in its classifications at different distances. Despite low confidence values at further

distances when compared to FastSAM's segmentation, YOLOv8 still demonstrates the

ability to detect and classify objects with reasonable accuracy across varying distances,

showcasing its potential for applications requiring real-time object detection and

classification.

7.1.1 Conclusions and Improvements

With implementation of the core project functionality for the deep learning platform

complete, a few key takeaways should be noted. Both models functioned well,

demonstrating efficient performance metrics and overall latency speeds which fall within

the desired real-time range of 1000ms. Video stream FPS is ideal, reaching the near 30FPS

maximum which, for applications outside of the project scope, is well above what is often

necessary and thus provides room for future reduction of computational load and

complexity. Inference speed and resolution also performed quite well, with the computer

being able to perform inference on a mid-range resolution image at fast speeds. Finally, the

Suderman Electronic & Computer Engineering 49

segmentation and classification distances and confidences show the model’s abilities in a

task suited for the automated vehicle system design.

While the models exhibit commendable performance across the performance metrics, there

are still opportunities to optimize and refine the design further. Connection latency stands

as a serious consideration for improvement as reducing this variable enables a greater array

of systems it can be integrated with. Resolving buffering issues and reducing lag in frame

transmission could also enhance overall system efficiency and responsiveness. Alterations

could also be made to reduce computation costs in areas such as FPS to increase other

metrics such as resolution. Modifying system abilities in this way can increase suitability for

other applications and broaden the range of use-cases. Ultimately, while model

performance was good in testing, there are still opportunities to optimize and refine the

design further, enabling broader integration, increased efficiency, and expanded

applicability across various use cases.

7.2 Line Following Algorithms and Demo Model Performance

The demonstrative model’s performance is based on the abilities of the software and

algorithms to navigate the test scenario with speed and accuracy. This section examines

these and other capabilities of the model, software, and hardware setups, and provides

analysis of the results.

7.2.1 Line Tracking Results

The line tracking algorithms on the embedded system were tested and analyzed with a focus

on three primary objectives, those being:

1) Speed – How fast can the vehicle track the lines and move across the track?

2) Accuracy – Are there any situations which diminish or break the algorithm

functionality?

3) Capabilities – What amount of processing can be performed on-device simultaneously?

Speed was assessed by placing the car on the track and recording the time taken to reach

the end point of the track and stop. This track consisted of six A4 sheets of paper, arranged

in different configurations for each test, and totaling an approximate driving distance of 2.4

meters. The car was tested on three different track configurations, seen below, each with

increasing complexity.

Suderman Electronic & Computer Engineering 50

Figure 7.3 The 3 track types used to test the line following abilities.

Each track consisted of the same amount of A4 sheets, was the same length, and was either

completely straight, a continual right curve, or an S-curve shape. The car was placed at the

start of each track and released, with timing finishing when the car could no longer find the

line to track and would thus stop. These timings were recorded five times for each track and

the average completion times taken.

Looking at the data for each track, the straight track completed significantly quicker than

the others, finishing at an average of 5.5 seconds. The S-Curve track finished second, with

an average of 19.8 seconds, and the right-curve track came in last at 31.5 seconds’ average.

Such a variation in completion times was not expected but is likely attributable to the

curvature in each track. Curvature in the track causes a significant slowdown in movement

speed as, instead of being able to pivot the wheels a certain degree and continue forward

movement, vehicle rotation is accomplished by rotating the right and left wheels in opposite

directions to spin the car. This is the only way to turn the vehicle as the chassis doesn’t

possess a wheel pivoting system and means that any time turning is required, forward

motion must stop. While impacting the movement speed of the vehicle, this is only a minor

issue which could be resolved with a different vehicle model.

Suderman Electronic & Computer Engineering 51

Figure 7.4 Average completion times for each track.

The algorithm accuracy was analyzed simultaneously and demonstrated positive results

with a few minor issues. The primary issue noticed was that, if moving at its full speed on a

straight section of the track, the time taken to notice a curve would be too slow. This kept

the vehicle from turning at the appropriate moment and would push it off the track. This

issue was quite simple to fix, and this was done by lowering the vehicle’s maximum speed.

After this change, tracking would no longer be lost on sharp turns and the vehicle would

turn appropriately. Another minor issue slowed down the turning speeds of the vehicle due

to the lack of ability to turn the wheels. A slight jitter would occur when the vehicle made

directional adjustments which would cause the algorithm to lose track of the line for a very

short period which would slow the turning adjustments. Fixing this problem would aid in

the time taken to complete routes with curvature and improve model performance and

could be done with the addition of a pivoting wheel system.

Different lighting conditions also influenced the ability of the line-tracking algorithm, with

harsh lighting and dim lighting being the primary issues. Harsh lighting would cause an

over-detection of edges, which would reduce the distance the system could accurately track.

Dim lighting would conversely cause an under-detection of edges, leading to gaps in the

lines and lessened tracking distance. Solving these problems could be done in two ways,

either through adding fixed lighting to the front of the car to illuminate the path forward

consistently or using infrared cameras and infrared lighting to give consistent lighting to

the approaching track. Both are viable approaches, with the infrared suggestion being more

complex but suitable for more conditions, and the simple LED approach being

straightforward but adding constant lighting which may not be ideal for some applications.

5.5

19.8

31.5

0

5

10

15

20

25

30

35

Straight Track S-Curve Track Right-Curve Track

Average Time (Sec)

Suderman Electronic & Computer Engineering 52

Figure 7.5 Effects of lighting conditions on the line-tracking algorithm.

7.2.2 Analysis of Computational Load

Measurements of the computational load on both the Raspberry Pi and the deep learning

platform were measured to monitor their processing capabilities and total computational

usage. These measurements were performed using the task manager applications on each

device, which display details regarding CPU, GPU, and memory usage.

Figure 7.6 Performance metrics of deep learning platform.

The results of the deep learning platform computational usage were lower than expected,

showing that only 50.4% of CPU resources and 9.5% of GPU resources were occupied by the

models during inference. This is positive, indicating further computation could be

performed off the embedded system and larger, more accurate models could be used.

Network consumption was 7.0 Megabytes per second, which is a reasonable amount and

demonstrates the suitability of the system for smaller network connections. Power

consumption is also indicated at very high usage levels, which can be estimated between

100-200 watts power draw.

Performance on the Raspberry Pi was similarly adequate, with lower-than-expected

readings for all usage statistics. CPU usage varied, staying below 70% usage, indicating

room for further additions to the software algorithms. GPU and memory usage stayed well

below their maximums, which is ideal but less impactful than CPU usage as it is less vital for

software performance.

Suderman Electronic & Computer Engineering 53

Figure 7.7 Performance metrics of Raspberry Pi.

7.3 Conclusions

To conclude analysis of the system and the refinements made, a brief overview of the full

system details is necessary. The figure below demonstrates the core project stage at

completion. The full system capabilities include simultaneously executing the line-tracking

algorithm, hosting the webcam feed for the deep learning platform, performing deep-

learning computation on the webcam stream, and ultimately returning the processed

stream to be viewed on the Raspberry Pi in real-time. Further project enhancements will be

additional to the key aims of the project, but the current core state represents achievement

the key goals defined in the project scope.

Figure 7.8 Model (YOLOv8x-seg) and line tracking functioning simultaneously.

Findings from the evaluation of the deep learning platforms and line following algorithm

performance were closely analyzed. Takeaways for the DL platform include measurements

of key metrics such as connection latency, frames per second, inference speed, and object

detection abilities, which all fell within reasonable ranges. Both FastSAM and YOLOv8

demonstrated efficient inference speeds and accurate object detection capabilities and fell

within the desired real-time range. Buffering issues, however, led to a reduction in FPS

during frame transmission. The line following algorithms exhibited commendable speed

and accuracy, but suffered minor issues related to vehicle turning speed and sensitivity to

lighting conditions. Analysis of computational load on the DL platform and Raspberry Pi

Suderman Electronic & Computer Engineering 54

revealed ample room for additional processing tasks and enhancements, underscoring the

effectiveness of the systems while highlighting areas for refinement. Some opportunities for

improvement include reducing buffering issues, modifying chassis characteristics to

improve vehicle turning, and mitigating lighting issues. The following section will target

some of these problems, enhancing the core project scope and adding additional

functionality. Through these optimizations, the overall system can be further enhanced to

meet the demands of real-world applications, ultimately expanding usability across various

applications.

Chapter 8: Enhancements & Additions

Building on the basic core implementation previously discussed, a few further

enhancements and additions were made within the remaining project development

timeframe. This section introduces several key improvements to the system which aim to

elevate the existing systems. First, additional models were integrated, those being

MobilenetSSD and YOLOv8n, onto the edge device to provide greater comparative analysis

of the function of the DL platform. These models are introduced, and their functionalities

explained, followed by a comparison of their performances to provide insights into their

effectiveness for on-device processing tasks. Graphs are used to visualize the results of these

comparisons and give a clear understanding of their respective performances. Additionally,

modifications to the self-driving algorithm are explored, including a driving mode toggle

and the introduction of a threshold slider for lighting adjustments. Finally, modifications to

the FastSAM implementation to utilize the text prompt feature are made, and its capabilities

and drawbacks highlighted. These enhancements and additions aim to further optimize the

systems developed and improve their efficiency and versatility for real-world applications

while further demonstrating the feasibility of the proposed embedded system deep learning

platform design.

8.1 Additional Models on Edge Device

While comparison of the DL platform models was performed, additional analysis and

conclusions could be drawn from comparison with models running on the edge device. The

basic premise of this objective was to further elaborate on the feasibility, and superiority,

of utilizing the DL platform methodology previously described for a range of applications

rather than implementing machine learning models on the device itself. To do this, two

models aimed at lightweight applications on small systems were chosen, namely

MobilenetSSD and YOLOv8-nano (YOLOv8n). Similarly to the other two models, these

Suderman Electronic & Computer Engineering 55

models were used with the pretrained weights provided by their respective developers and

tests performed to analyse computational load and performance.

The YOLO model was first implemented on the Raspberry Pi, running inference directly on

the webcam frames in real-time. This model is twofold, providing a version which detects

and categorizes classes in a frame, and a version which also segments the detected classes.

This model was able to be successfully deployed, and sample results taken on a test

environment, with examples seen in the figure below.

Figure 8.1 Inference results for YOLOv8n and YOLOv8n-seg models.

The rationale for choosing this model was based on its similarity to the deep learning

platform as it is a smaller version of the same YOLO version used and thus provides a close

comparison in terms of capabilities. It is also a cutting-edge model, typical for what would

be commonly used in real-world applications.

A second model was chosen to add another layer of comparison, MobilenetSSD. It is a

lightweight convolutional neural network architecture optimized for mobile and embedded

devices and designed for object detection tasks. It works by combining the MobileNet

architecture with a Single Shot Multibox Detector (SSD) head and offers real-time inference

and high performance on resource constrained platforms. Seen in the figure below, the

output of the inference is a stream of text in the command line, rather than a display of the

processed frames overlaid with bounding boxes. This aims to increase the processing speed

of the inference by removing the overhead required for displaying the outputs.

Suderman Electronic & Computer Engineering 56

Figure 8.2 MobilenetSSD input frame and detection results test.

With edge model setup completed, tests were performed for cross comparison and to

contrast abilities versus the DL platform’s models. Looking at the distances of pedestrian

class recognition, the first graph below shows the performance comparison of the edge

models with the DL models. As expected, edge performance is lower, with the YOLO and

Mobilenet models recognizing the pedestrian class between 0.1 and 0.35 meters. MobileNet

performs the worst of the three edge models, which is to be expected as it is the oldest and

least updated model. Comparison of stop sign class detection distances is displayed in the

lower graph, with a closer comparison being seen. YOLOv8x-seg performs the strongest, but

the YOLO nano version and FastSAM model have similar recognition distances. The

Mobilenet model performs the weakest, which is again unsurprising and shows its lack of

credibility in distance performance.

Suderman Electronic & Computer Engineering 57

Figure 8.3 Graphs comparing detection distances for pedestrian and stop sign classes.

For further comparison, a table of various features of the models was created to illustrate

the benefits and drawbacks of each. Looking first at the connection latency, the edge models

have an advantage with no latency due to their local usage. The GPU accelerated models,

however, still offer real time speeds by operating under 1000ms. As for FPS, the edge

models have a severe disadvantage, running nowhere near real-time speeds with Mobilenet

being the only model capable of processing more than one frame per second. This is further

illustrated by the inference speeds, taking between two and four seconds for the YOLO edge

models to compute a frame and at most one second for Mobilenet.

Table 8.1 Comparison of all features of the DL platform and edge device models.

Suderman Electronic & Computer Engineering 58

The detection column reiterates the previous findings on detection distances for the stop-

sign and person classes but adds information regarding the confidence levels for the YOLO

and Mobilenet models. These results are as expected, showing stronger confidences at

further distances for the larger models, with the edge models offering decent confidence

levels at slightly lower distances. The memory footprint for each model is also commented

on, with the primary takeaways being that models operating on the DL platform offer low

on-device memory usage, but medium or large external usage. The edge devices, in contrast,

require a moderate level of memory usage on the embedded system but no external usage

whatsoever. Finally, the relative system energy requirements and costs are included. These

are as expected, with the GPU accelerated models needing high levels of energy to operate

and costing significantly more to suit their hardware and networking requirements. Edge

model energy usage and cost are generally low but may reach a medium range depending

on the desired size of the implemented models.

In essence, the addition of these models on the edge device serves to give a broader

understanding of the proposed usage of the external deep learning platform and insight into

the prevalence of such a solution. The analysis concludes the superiority of the GPU

accelerated models in most inference tasks but highlights the necessity of tailoring the

choice of model to the desired system capabilities.

8.2 Modifications to Self-Driving Software

Further enhancements to the core project scope were conducted, including modifications

to the self-driving software and algorithms used. While minor improvements, the aim was

to solidify the workings of the vehicle system and create a stronger foundation for the

analysis of the other constituent project parts.

First, a toggle to enable or disable the vehicle movements remotely was added. This was a

simple adjustment, and its execution required only to adjust a few lines of code to include a

Boolean check for the driving state. The state of the driving would be displayed on screen

and can be seen in the figure below. This change made further testing easier as the car could

be remotely placed on the track before beginning the line tracking.

Another addition to the road tracking GUI and functionality was a slider at the bottom of the

output video frame which, when adjusted, would modify the lighting thresholds. These

thresholds are used by the edge detection algorithm to determine what levels of light are

within the threshold of either black or white. To combat varied lighting conditions in

different environments, this slider can be shifted to reach the ideal edge detection settings.

Suderman Electronic & Computer Engineering 59

Figure 8.4 Photo showing the updated line tracking user interface.

8.3 FastSAM Text Prompt Functionality

Further work was done on the FastSAM model to enable text prompt functionality during

real-time inference. Uniquely supported by FastSAM, text prompts can be used during

inference to define what objects should be segmented by the model. This is a feature unique

to FastSAM and opens the door for cutting edge approaches such as segmenting driving

surfaces of autonomous vehicles, segmenting specifical anatomical structures in medical

imaging, and numerous other applications. This ability is enabled by CLIP (Contrastive

Language-Image Pre-training), a model developed by OpenAI [24], which learns to

understand images by associating them with corresponding textual descriptions, thus

enabling it to complete a wide range of vision-language tasks with high accuracy.

The original goal was to achieve text prompt use on real-time frames processed by the

model, but that proved difficult. Due to a lack of documentation on the FastSAM model, and

its relatively short lifespan, there wasn’t clear instruction on implementation of this feature.

A working version was completed where the text prompts were working on the video feed,

but could only be processed at incredibly slow speeds, often taking 10 to 30 seconds for

each frame. Near real-time inference speeds should be possible with this method, but only

Suderman Electronic & Computer Engineering 60

the limited implementation was accomplished during the allotted time frame. Ultimately,

this feature could prove highly beneficial for improving applications and with more time

would have been possible to implement properly.

Figure 8.5 Example results of real-time text prompt input implementation for FastSAM.

8.4 Conclusions

In summary, the enhancements and additions made to the core project scope aim to refine

the existing systems and broaden the project’s scope of analysis. The integration of

additional models, namely YOLOv8-n, YOLOv8-n-seg, and MobilenetSSD, onto the edge

device provides further comparative analysis with the deep learning platform models,

shedding light on their effectiveness for on-device processing tasks, but also highlighting

the multitude of benefits gained via use of a DL platform. The chosen graphical comparisons

give clear insights into the performance disparities between the edge and DL models,

emphasizing the trade-offs in computational load, processing speed, and detection accuracy.

Modifications were made to the self-driving algorithm to improve vehicle control and adjust

line tracking variables, improving the system’s functionality and ease of testing.

Additionally, efforts to enable text prompt functionality in the FastSAM model via the CLIP

model demonstrate potential for further improvements and applications, although

problems exist regarding implementation. These enhancements aim to contribute to a

deeper understanding of system capabilities, highlighting the need for tailored model

selection based on the specific application, its requirements, and system constraints.

Ultimately, further optimization and exploration of these enhancements could yield

valuable insights and advancements in embedded systems coupled with DL platforms.

Suderman Electronic & Computer Engineering 61

Chapter 9: Conclusions & Future Work

With the completion of the core project objectives, additional work, and refinements

completed, project conclusions can be assessed. This section aims to recap the primary

discoveries and analysis of the project work as well as suggest future improvements and

further work which could be carried out to extend or apply these ideas further.

9.1 Project Conclusions

The findings of this study on feasibility testing of real-time object segmentation and

recognition models in small embedded systems shed light on the diverse landscape of

inference methodologies and their suitability for various applications. Insights into the

process of creating a small autonomous driving embedded system were also gained, with

takeaways regarding the use of classical computer vision techniques and the ideal hardware

setup being covered.

By leveraging classical computer vision algorithms alongside machine learning-based

inference, hybrid autonomous systems can be created to navigate various environments

with limited computational resources. Takeaways on designing and implementing the

embedded system emphasize the importance of integrating classical computer vision

techniques and optimized hardware configurations in the development of small-scale

embedded systems. Hardware choice also holds a strong role, with selection of components

requiring thorough consideration. Overall, the chosen system proved a success in being an

example system for implementing the deep learning platform and was able to complete all

desired aims and objectives.

The evaluation of using a remote GPU accelerated system to perform deep learning model

inference and computation reveals its commendable performance. This computation over a

local network returns pertinent data within 800 milliseconds, lower than the chosen ideal

maximum real-time latency of 1000ms. This indicates its aptness for applications

necessitating moderate to fast response times. This includes systems such as real-time

object detection in surveillance systems or autonomous vehicles, where timely decision-

making is crucial. The benefit of integrating an embedded system with this suggested deep

learning platform is obvious, but it is imperative to acknowledge the system’s inherent

dependency on network connectivity. This makes the system susceptible to latency issues

and network interference and means any implementations must take this critical factor into

consideration and ensure steady and reliable network connections.

Testing of on-device machine learning models was also performed to provide comparison

with the DL platform and analyse the current state of machine learning on edge devices. On-

device processing emerges as a possible alternative, albeit with certain caveats and

Suderman Electronic & Computer Engineering 62

drawbacks. It offers robustness and independence from external network dependencies;

however, it poses challenges in terms of computational resources and power consumption,

particularly on small embedded systems. While there is no network feedback due to their

local nature, edge processing computational speeds and abilities are much less capable, with

inference speeds under one frame per second for standard models. This underscores the

importance of carefully weighing the trade-offs between computational efficiency and

system complexity when considering on-device processing solutions. Moreover, on-device

processing is expensive in terms of the available computational abilities and power

consumption limitations on small systems, which further impact the possibility of

implementation on the edge device itself.

Furthermore, the comparative analysis of external GPU-accelerated models and edge

models highlighted their respective strengths and weaknesses in different contexts. Best

suited for applications with consistent network performance and low interference, a DL

platform approach could be used in applications like industrial automation or systems

which will remain within a predetermined area with the necessary networks. Conversely,

edge models will excel in environments where network connectivity cannot be relied upon

and where reliability and robustness are critical. Critical response times for specific systems

need to be determined prior to implementing off-device processing, to identify which

models and system choices are best suited for the application. With these points considered,

selection of the most appropriate inference methodology relies on a thorough

understanding of the application requirements and any environmental constraints

involved.

9.2 Future Work

Moving forward, future work in this domain should aim to choose a specific application

domain, closely analyse its hardware constraints, and design a system tailor made for a real-

world application. This entails conducting detailed assessments of task-specific

requirements and environmental factors to ascertain the optimal configuration of hardware

components and inference methodologies. Applications such as defect identification and

removal on production lines could be chosen for deployment of the edge system coupled

with DL platform, further demonstrating its feasibility.

Additionally, leveraging domain-specific datasets and fine-tuning techniques could greatly

enhance the performance of machine learning models used with the embedded system.

Customizing the models to suit the intricacies of the target application could optimize

inference accuracy and efficiency, thereby maximizing the utility of these embedded

systems in real-world scenarios.

Suderman Electronic & Computer Engineering 63

In summary, this study provides insights into the realm of inference methodologies on

embedded systems, but there remains much scope for further refinement and

experimentation. Through the addressing of the identified challenges and leveraging

emerging technologies, it is possible to develop a much more sophisticated embedded

system capable of meeting the evolving demands of diverse applications across various

industries and domains. The pursuit of future endeavours in this field holds great potential

for advancing the frontiers of embedded system design and machine learning integration.

Suderman Electronic & Computer Engineering 64

Bibliography

[1] K. Malhotra and Y. Kumar, "Challenges to implement Machine Learning in Embedded

Systems," 2020 2nd International Conference on Advances in Computing, Communication

Control and Networking

[2] Kirillov, M. (2023). Segment Anything. Meta AI Research.

[3] Ansari, M. (2015). Design and Implementation of Autonomous Car using Raspberry Pi.

International Journal of Computer Applications.

[4] Shahane, V. (IEEE). A Self-Driving Car Platform Using Raspberry Pi and Arduino.

[5] Mohan, A. (2019). Autonomous Self-Driving Car using Raspberry Pi Model. IJERT.

[6] Dhavalikar, R. (2018). Traffic Light Detection and Recognition for Self Driving Cars Using

Deep Learning. IEEE.

[7] Giripunje, P. (RASPBERRY PI BASED AUTONOMOUS CAR). IJRAR.

[8] Gazis, T. (2021). Examining the Sensors That Enable Self-Driving Vehicles. IEEE.

[9] Day, C. (2019). Pedestrian Recognition and Obstacle Avoidance for Autonomous Vehicles

Using Raspberry Pi. Cham Springer.

 [10] E. Batzolis, E. Vrochidou and G. A. Papakostas, "Machine Learning in Embedded

Systems: Limitations, Solutions and Future Challenges," 2023 IEEE

[11] Zhao, Xu & Ding, Wenchao & An, Yongqi & Du, Yinglong & Yu, Tao & Li, Min & Tang,

Ming & Wang, Jinqiao. (2023). Fast Segment Anything.

[12] Ultralytics (2024) YOLO by Ultralytics, Ultralytics YOLOv8 Docs. Available at:

https://docs.ultralytics.com/#yolo-a-brief-history (Accessed: February 2024).

[13] Rath, S. (2024) Yolov8: Comprehensive guide to state of the art object detection,

LearnOpenCV. Available at: https://learnopencv.com/ultralytics-yolov8/ (Accessed:

February 2024).

[14] Freenove, Freenove/freenove_4wd_smart_car_kit_for_raspberry_pi: Apply to

FNK0043, GitHub. Available at:

https://github.com/Freenove/Freenove_4WD_Smart_Car_Kit_for_Raspberry_Pi (Accessed:

February 2024).

Suderman Electronic & Computer Engineering 65

[15] Ultralytics (2024b) Yolov8, Ultralytics YOLOv8 Docs. Available at:

https://docs.ultralytics.com/models/yolov8/#supported-tasks-and-modes (Accessed:

February 2024).

[16] Meta AI SA-1B Dataset, AI at Meta. Available at:

https://ai.meta.com/datasets/segment-anything/ (Accessed: February 2024).

[17] Ultralytics (2024a) COCO Dataset, COCO - Ultralytics YOLOv8 Docs. Available at:

https://docs.ultralytics.com/datasets/detect/coco/#key-features (Accessed: February

2024).

[18] noorkhokhar99, Segment anything with webcam in real-time with fastsam, GitHub.

Available at: https://github.com/noorkhokhar99/Segment-Anything-with-Webcam-in-

Real-Time-with-FastSAM (Accessed: February 2024).

[19] CASIA-IVA-Lab, Casia-Iva-Lab/FASTSAM: Fast Segment Anything, GitHub. Available at:

https://github.com/CASIA-IVA-Lab/FastSAM (Accessed: February 2024).

[20] K. Malhotra and Y. Kumar, "Challenges to implement Machine Learning in Embedded

Systems,"

2020 2nd International Conference on Advances in Computing, Communication Control and

Networking (ICACCCN), Greater Noida, India, 2020, pp. 477-481, doi:

10.1109/ICACCCN51052.2020.9362893.

[21] Zhang, Xingzhou & Wang, Yifan & Shi, Weisong. (2018). “pCAMP: Performance

Comparison of Machine Learning Packages on the Edges.”

[22] Beyond accuracy: Measures for assessing machine learning models, pitfalls and

guidelines, Richard Dinga, Brenda W.J.H. Penninx, Dick J. Veltman, Lianne Schmaal, Andre F.

Marquand, bioRxiv 743138; doi: https://doi.org/10.1101/743138

[23] Study: Average car size is increasing — will roads still be safe for small cars and

pedestrians? Available at: https://www.thezebra.com/resources/driving/average-car-

size/ (Accessed: March 2024).

[24] OpenAI (January 2021) Clip: Connecting text and images. Available at:

https://openai.com/index/clip (Accessed: March 2024).

https://doi.org/10.1101/743138

Suderman Electronic & Computer Engineering 66

Appendix A: GitHub Repository

See the link below for the code repository containing relevant project files.

https://github.com/superKabe/Autonomous-Driving-with-Object-Segmentation

https://github.com/superKabe/Autonomous-Driving-with-Object-Segmentation

Suderman Electronic & Computer Engineering 67

Appendix B: RPI PCA9685 PWM Servo Driver

	Table of contents
	Glossary
	Declaration
	Chapter 1: Introduction
	1.1 Project Introduction
	1.2 Goals & Objectives
	1.2.1 Research and Implementation Strategy
	1.2.2 Smart Vehicle Embedded System
	1.2.3 Remote Computer-Vision Platform
	1.2.4 Construction of a Demonstrative Model
	1.2.5 Advanced Deep-Learning Capabilities
	1.2.6 System Testing and Validation
	1.2.7 Demonstration of Completed System

	1.3 Conclusions

	Chapter 2: Literature Review
	2.1 Introduction
	2.2 Critical Evaluation of Hardware Design
	2.2.1 Microcontrollers
	2.2.2 Sensors
	2.2.3 Other Sensors

	2.3 Critical Evaluation of Software Design
	2.3.1 Line Detection
	2.3.2 Obstacle Avoidance & Navigation

	2.4 Deep Learning Platform
	2.4.1 Limitations and Requirements of Chosen Application
	2.4.2 Meta Segment Anything Model (SAM)
	2.4.3 YOLOv8 (You Only Look Once, Version 8)
	2.4.4 Conclusions

	Chapter 3: Foundational Techniques
	3.1 Introduction
	3.2 Microcontrollers (Raspberry Pi)
	3.3 Sensors (CSI Camera and Webcam)
	3.4 Software Design Evaluation
	3.5 Deep Learning Models and Platform
	3.6 Comprehensive Roadmap
	3.7 Conclusions

	Chapter 4: Proposed System Design
	4.1 Introduction
	4.2 System Block Diagram
	4.2.1 Microcontroller – Raspberry Pi 4b
	4.2.2 Power Supply
	4.2.3 Sensors
	4.2.4 Object Recognition and Segmentation Models
	4.2.5 Chassis & Motor System

	4.3 System Component Diagram
	4.4 Conclusions

	Chapter 5: Feasibility Testing & Proof-of-Concept
	5.1 Introduction
	5.2 Hardware Setup & Testing
	5.2.1 Hardware Assembly

	5.3 Software Setup & Testing
	5.3.1 Operating System & Headless Connection
	5.3.2 Software Testing
	5.3.3 Deep Learning Platform Testing

	5.4 Conclusions

	Chapter 6: Core Project Implementation
	6.1 Introduction
	6.2 Line Following Algorithm Design
	6.3 Line Following Software
	6.3.1 Colour Conversion
	6.3.2 Gaussian Blur
	6.3.3 Binary Thresholding
	6.3.4 Canny Edge Detection
	6.3.5 Hough Line Detection & Line Filtering
	6.3.6 Integration with Chassis

	6.4 Deep Learning Platform Design
	6.4.1 Chosen Models and Purposes
	6.4.1.1 FastSAM
	6.4.1.2 YOLOv8

	6.4.2 Technical Details
	6.4.3 Software Development

	6.5 Demo Model Design
	6.6 Conclusions

	Chapter 7: Results & Refinements
	7.1 Deep Learning Platform Performance
	7.1.1 Conclusions and Improvements

	7.2 Line Following Algorithms and Demo Model Performance
	7.2.1 Line Tracking Results
	7.2.2 Analysis of Computational Load

	7.3 Conclusions

	Chapter 8: Enhancements & Additions
	8.1 Additional Models on Edge Device
	8.2 Modifications to Self-Driving Software
	8.3 FastSAM Text Prompt Functionality
	8.4 Conclusions

	Chapter 9: Conclusions & Future Work
	9.1 Project Conclusions
	9.2 Future Work

	Bibliography
	Appendix A: GitHub Repository
	Appendix B: RPI PCA9685 PWM Servo Driver

